<<12345>>
6.

Let   $P=\begin{bmatrix}3 & -1 &-2\\2 & 0 &\alpha\\3&-5&0\end{bmatrix}$  , where  $\alpha \epsilon R$ .Suppose Q= [$q_{ij}$] is a matrix such that  PQ=kl, where  $k\epsilon R, k\neq 0$ and l is the identity matrix of order 3. If  $q_{23}=-\frac{k}{8}$  and $det(Q)=\frac{k^{2}}{2}$  then


A) $\alpha =0,k=8$

B) $4\alpha -k+8=0$

C) $det (Padj(Q))=2^{9}$

D) $det (Q adj(P))=2^{13}$



7.

Let  $f:(0,\infty)\rightarrow R$ be a differentiable function such that   $f'(x)=2-\frac{f(x)}{x}$  for all  $x \epsilon (0,\infty)$  and $f(1)\neq 1$ Then


A) $\lim_{x \rightarrow 0+} f'(\frac{1}{x})=1$

B) $\lim_{x \rightarrow 0+}x f(\frac{1}{x})=2$

C) $\lim_{x \rightarrow 0+}x^{2} f'({x})=0$

D) $|f(x)|\leq 2$ for all $x\epsilon (0,2)$



8.

Let  $f:R\rightarrow R,g:R\rightarrow R$ and  $h:R\rightarrow R$ be differentiable functions such that  $f(x)=x^{3}+3x+2$, $g(f(x))=x$   and  $h(g(g(x)))=x$ for all  $x \epsilon R$   , Then


A) $g\prime (2)=\frac{1}{15}$

B) h'(1)=666

C) h(0)=16

D) h(g(3))=36



9.

The circle $C_{1}:x^{2}+y^{2}=3$   with  centre at O intersects the parabola $x^{2}=2y$ at point P in the first quadrant .Let the tangent to the circle   $C_{1}$ at P touches other two circles  $C_{2}$  and $C_{3}$  at $R_{2}$  and  $R_{3}$  , respectively. Suppose  $C_{2}$  and $C_{3}$  have equal radii  $2\sqrt{3}$ and centres   $Q_{2}$ and  $Q_{3}$ , respectively. If $Q_{2}$  and  $Q_{3}$  lie on the Y-axis , then


A) $Q_{2}Q_{3}=12$

B) $R_{2}R_{3}=4\sqrt{6}$

C) area of the $\triangle OR_{2}R_{3} is 6\sqrt{2}$

D) area of the $\triangle PQ_{2}Q_{3} is 4\sqrt{2}$



10.

Let RS be the diameter of the circle  $x^{2}+y^{2}=1$, where S is the point (1,0). Let P be a variable point (other than R and S) on the circle and tangents to be a circle at S and P meet at the point Q. The normal to the circle at P.intersects  a  line drawn through Q parallel to RS at point  E.  Then, the locus of E passes through the point (s)


A) $\left(\frac{1}{3},\frac{1}{\sqrt{3}}\right)$

B) $\left(\frac{1}{4},\frac{1}{2}\right)$

C) $\left(\frac{1}{3},-\frac{1}{\sqrt{3}}\right)$

D) $\left(\frac{1}{4},-\frac{1}{2}\right)$



<<12345>>